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L iquid Crystals, 1999, Vol. 26, No. 5, 753 ± 758

Twist transition in nematic droplets: a stability analysis

ANDREAS RUÈ DINGER and HOLGER STARK*
Institut fuÈ r Theoretische und Angewandte Physik, UniversitaÈ t Stuttgart,

Pfa� enwaldring 57, D-70550 Stuttgart, Germany

(Received 21 August 1998; in ® nal form 29 November 1998; accepted 2 December 1998 )

The twist transition of the radial con® guration between two concentric spheres with rigid
perpendicular anchoring at the surfaces is examined. We perform a stability analysis and
derive a su� cient condition for the twist transition to take place. We show that even a small
sphere inside a large one can stabilize the radial con® guration which con® rms recent
experiments. The light transmission of the twisted director ® eld in a nematic drop is calculated
by means of Jones matrices. The result agrees qualitatively with experimental images.

1. Introduction one and a hyperbolic one, the latter being energetically
favoured for a ratio of bend to splay constants smallerNematic con® gurations within con® ned geometries

have attracted a lot of interest in liquid crystal research than six [6, 7]² . It has also been proposed that the
twisted radial director con® guration in a nematic dropduring the last decade [1]. They are of considerable

technological importance in polymer dispersed liquid is given by a combination of a hyperbolic hedgehog at
the centre of the drop and a radial one at the peripherycrystals (PDLCs), which are used as light shutters. On

the other hand, they represent appealing systems whereby [8]. This con® guration, which involves a twist in the
director ® eld, has been analysed by means of an ansatztopological defects and the in¯ uence of con® ning geo-

metries on bulk phase transitions can be studied. It function, and a criterion has been given for the twist
transition [8].has been shown, both experimentally and theoretically,

that the director con® guration strongly depends on the In this paper we focus on the director ® eld between
two concentric spheres with perpendicular anchoringtype of surface anchoring, on the strength of an applied

magnetic ® eld, and on the bulk and surface elastic at both the surfaces and present a stability analysis
for the radial con® guration against axially symmetricconstants.

In this paper we will mainly concentrate on nematic deformations. In particular, we will derive a criterion for
the twist transition and we will show that even smallcon® gurations within spherical droplets which occur

either in nematic emulsions [2] or in a polymer matrix spheres inside a large one are su� cent to avoid twisted
con® gurations. This has been recently observed inin PDLCs [3]. Nearly 30 years ago two main director

con® gurations depending on the surface anchoring were experiments on multiple nematic emulsions [9].
Throughout the paper we assume a rigid surfacepredicted: a radial one with a point defect at the centre

for perpendicular orientation of the molecules at the anchoring of the molecules. For completeness we note that
in a single droplet for su� ciently weak anchoring strengthdroplet surface and a bipolar one with two surface defects

called boojums for tangential anchoring [2]. This simple an axial structure with an equatorial disclination ring
appears [10].picture had to be modi® ed when it was found that

nematic droplets in both cases may also exhibit a twisted The rest of this paper is organized as follows: In §2 we
write the Frank free energy in terms of small deviationsstructure [4]. For the bipolar con® guration a stability

analysis for the twist transition was performed [5]. from the radial con® guration. Then, in §3, we formulate
and solve the corresponding eigenvalue equation. TheFrom the theoretical side, it was pointed out that the

perpendicular anchoring at the surface induces a defect lowest eigenvalue leads to the criterion for the twist
transition. Finally, the article closes with a discussion ofstructure in the interior of the droplet which is called a

hedgehog and which carries a topological charge 1. our results in §4.
There are two main classes of these hedgehogs, a radial

*Author for correspondence; e-mail: holger@itap.physik.uni- ² We disregard here the in¯ uence of the saddle-splay term
with the elastic constant K 24 which alters this criterion [7].stuttgart.de
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754 A. RuÈ dinger and H. Stark

2. Expansion of the elastic energy splay term of the Frank free energy contributes and its
total free energy is given byWe consider the defect-free radial director con-

® guration between two concentric spheres of radii rmin

and rmax . Such a geometry is, for example, realized in P rmax

rm in

r
2 dr PS2

d cos h dwK 11 (= ¯ n)
2 = 8pK 11 (rmax Õ rmin ).

multiple nematic emulsions, where surfactant-coated
water droplets are dispersed in large nematic drops,

(6)which, in turn, are surrounded by the water phase [9].
Rigid perpendicular anchoring of the director at both If an azimuthal (b Þ 0) or a polar component (a Þ 0 ) ofthe surfaces can be achieved by a special choice of the the director is introduced, the splay energy can be reducedsurfactant [9, 11]. If the smaller sphere with radius rmin at the cost of non-zero twist and bend contributionsis missing, the radial director con® guration exhibits a depending on the values of the Frank elastic constantspoint defect at the centre. We will argue below that this

K 11 , K 22 , and K 33 .situation, rmin = 0, is included in our treatment. With the help of equations (3), (4), and (5), the freeThe twist transition reduces the SO (3)-symmetry of the energy DF of the director ® eld of equation (1) withradial director con® guration to an axial C
2

-symmetry. respect to the radial con® guration can be written as:In order to investigate the stability of the radial con-
® guration n0 = er against a twist transition, we write the

DF = 2pb
2 P dr P d cos h[ Õ 4K 11 ( f

2 + r fr f )local director in a spherical coordinate basis allowing
for small deviations along the polar (h) and the azimuthal
(w) direction: +K 22 (cot h f + fh)

2 +K 33 ( f+ r fr )
2 ]

n (r, h)= A1 Õ
1

2
b

2
f

2 Õ
1

2
a

2
g

2Ber+ageh+b f ew. (1) +2pa
2 P dr P d cos h[ Õ 4K 11 (g

2 +rg r g)

f (r, h) and g (r, h) are general functions, which do not +K 11 (cot hg +gh)
2 +K 33 (g + rg r )

2 ]. (7)
depend on w due to our assumption of axial symmetry.

Note that the linear term in a in the splay term ofThe amplitudes a and b describe the magnitude of the
equation (3) vanishes when integrated over h.polar and azimuthal deviation of the director ® eld from

For any function f (r, h) leading to a negative value ofthe radial con® guration. The second order terms in b

the ® rst integral in equation (7), the radial con® gurationand a result from the normalization of the director.
(a = b = 0 ) is unstable with respect to a small azimuthalThe Frank free energy of a nematic liquid crystal is
deformation (b Þ 0 ), which introduces a twist into thegiven as a sum of three elastic terms:
radial director ® eld. Therefore, in what follows we will
call it the twist deformation. An analogous statementF = P d3

r{K 11 (= ¯ n)
2 +K 22 (n ¯ = Ö n)

2

holds for g (r, h) which introduces a pure bend into the
radial director ® eld. We are now looking for the con-+K 33 [n Ö (= Ö n)]2

}. (2)
dition which the elastic constants have to ful® l in order

Since we consider strong anchoring at all the surfaces, to allow for such functions f (r, h) and g (r, h). As we will
we do not take into account any surface terms. We demonstrate in the next section, the solution of this
calculate the splay, twist, and bend contribution of the problem is equivalent to solving an eigenvalue problem.
elastic energy up to second order in a , b and ® nd:

3. Formulating and solving the eigenvalue problem
(= ¯ n)

2 =
1

r
2 [4 Õ 4b

2
( f

2 + r fr f ) Õ 4a
2
(g

2 + rgr g)
In a ® rst step we focus on the twist deformation

(b Þ 0 ). We are facing the problem of knowing for which
+a

2
(cot hg +gh)

2 +4a (cot hg +gh)] values of K 11 , K 22 , K 33 the functional inequality
(3)

P dr P dx{K 22 (1 Õ x
2
)[x f / (1 Õ x

2
) Õ fx]2

(n ¯ = Ö n)
2 =

1

r
2 b

2
(cot h f + fh)

2 (4)

+ (K 33 Õ 4K 11 ) f
2 + (2K 33 Õ 4K 11 )r fr f

[n Ö (= Ö n)]2 =
1

r
2 [b

2
( f + r fr )

2 +a
2
(g + rgr )

2 ] (5) +K 33 r
2

f
2
r } < 0 (8)

has solutions f (r, x ). The integral in this inequality is thewhere an index denotes a partial derivative; e.g. fr= q f /qr.
For the untwisted con® guration (a = b = 0 ) only the ® rst integral of equation (7) after substituting x = cos h.
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755T wist transition in nematic droplets

Inserting the identities With both these results we obtain the instability
condition for a twist deformation:

1

2

K 33

K 11 G1

4
+C p

ln (rmax / rmin )D2H+
K 22

K 11
< 1. (15)

This inequality is the main result of the paper. If it is

r
2

f
2
r =

q
qr

(r
2

fr f ) Õ f
q
qr

(r
2

fr )

r fr f =
1

2

q
qr

(r f
2
) Õ

1

2
f

2

Õ 2x fx f = Õ
q

qx
( f

2
x )+ f

2

f
2
x (1 Õ x

2
)=

q
qx

[ (1 Õ x
2
) fx f ]+2x fx f Õ (1 Õ x

2
) fxx f

ful® lled, the radial director ® eld no longer minimizes the
Frank free energy. Therefore it is a su� cient condition
for the radial con® guration to be unstable against a
twist deformation. It is not a necessary condition since
we have restricted ourselves to second order terms
in the free energy, not allowing for large deformationsinto equation (8) we obtain surface terms which are zero
of the radial director ® eld. Hence we cannot excludebecause of our boundary conditions. Finally, we arrive
the existence of further con® gurations which besides theat
radial produce local minima of the free energy.

To clarify our last statement we take another view. The
stability problem can be viewed as a phase transition.P dr P dx (K 22 f D

(x)
f +K 33 f D

(r)
f )

P dr P dx f
2

< 2K 11 (9) Let us take K 33 as the t̀emperature’. Then condition
(15) tells us that for large K 33 the radial state is the
( linearly) stable one. If the phase transition is second
order-like, the radial state loses its stability exactly atwhere the second order di� erential operators D

(x) and
the linear stability boundary, while for a ® rst order-D

(r) are given by
like transition the system can jump to the new state
(due to non-linear ¯ uctuations) even well inside the

D
(x) = (1 Õ x

2
)

q2

qx
2 +2x

q
qx

+
1

1 Õ x
2 (10) linear stability region. Thus, as long as the nature of the

transition is not clear, linear stability analysis cannot
predict with certainty that the radial state will occur inD

(r) = Õ r
2 q2

qr
2 Õ 2r

q
qr

. (11)
the linear stability region. Furthermore, if the transition

The inequality in equation (9) is best ful® lled when line is crossed, the linear stability analysis breaks down,
the left hand side assumes a minimum. According to the and there could be a transition from the twisted to a
Ritz principle in quantum mechanics this minimum is new con® guration. However, there is no experimental
given by the lowest eigenvalue of the operator indication of such a new structure. With this in mind

we will discuss the instability condition (15) in theK 22 D
(x)+K 33 D

(r) (12)
next section.

on the space of square-integrable functions with f (rmin , h)= We ® nish this section by noting that the elastic energy
f (rmax , h)= 0 for 0 < h < p ( ® xed boundary condition) for a bend deformation (a Þ 0 ) has the same form as that
and f (r, 0)= f (r, p)= 0 for rmin < r < rmax . for the twist deformation (b Þ 0 ), but with K 22 replaced

The eigenvalue equation of the operator K 22 D
(x)+ by K 11 , cf. equation (7). Therefore, we immediately

K 33 D
(r) separates into a radial and an angular part. The conclude from equation (15) that the instability con-

radial part is a Eulerian di� erential equation [12] with dition for a polar component (a Þ 0 ) in the director ® eld
the lowest eigenvalue (1) cannot be ful® lled for positive elastic constants. A

director ® eld with vanishing polar component is always
stable in the second order.l

(r)
0 =

1

4
+C p

ln (rmax / rmin )D2

(13)

and the corresponding eigenfunction
4. Discussion

The instability condition (15) indicates for which
f

(r)
(r)=

1

Ó r
sinCp

ln (r/ rmin )

ln (rmax / rmin )D. (14) values of the elastic constants K 11 , K 22 , and K 33 the
radial con® guration is expected to be unstable with
respect to a twist deformation. The instability domain isThe angular part of the eigenvalue equation is solved
largest for rmax / rmin � 2 and decreases with decreasingby the associated Legendre functions P

m=1
n . The lowest

ratio rmax / rmin ; that is, a water droplet inside a nematiceigenvalue is l
(x)
0 = 2 and the corresponding eigenfunction

is f
(x) (h)= P

1
1 (h)= sin h. drop can stabilize the radial con® guration.
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756 A. RuÈ dinger and H. Stark

In ® gure 1 the instability condition (15) is shown. If
the ratios of the Frank elastic constants de® ne a point
in the grey triangles, the radial con® guration can be
unstable depending on the ratio rmax / rmin . The dark grey
area gives the range of the elastic constants where a
twisted structure occurs for rmax /rmin= 50. With increasing
ratio rmax / rmin the instability domain enlarges until it is
limited by K 33 /(8K 11 )+K 22 /K 11 = 1 for rmax / rmin � 2 .
The light grey triangle is the region where the radial
con® guration is unstable for rmax / rmin > 50, but where it
is stable for rmax / rmin < 50.

The circles in ® gure 1 represent the elastic constants
for MBBA, 5CB, and PAA. For 5CB the elastic constants
are in the light grey domain, i.e. a twisted structure is
expected for rmax / rmin � 2 (no inner sphere), but not
for rmax / rmin < 50. Such a behaviour has been recently
observed in multiple nematic emulsions [9]. It has been
found that a small water droplet inside a large nematic
drop prevents the radial con® guration from twisting.

Two examples of nematic drops observed under the
microscope between crossed polarizers can be seen in
® gure 2. In the upper image the director con® guration
is pure radial, in the lower one it is twisted. The upper
drop contains a small water droplet that stabilizes the
radial con® guration according to equation (15). The
water droplet is not visible in this image because of the
limited resolution. A better image is presented in [9].

We have calculated the polarizing microscope picture
of the twisted con® guration by means of the 2 Ö 2 Jones Figure 2. Radial (above) and twisted (below) con® guration
matrix formalism [1]. We took the director ® eld of of the director ® eld in a nematic drop (diameter # 20 mm)
equation (1) and used the eigenfunction of equation (14) of 5CB observed in the microscope between crossed

polarizers. In the radial con® guration there is a smallwith an amplitude b = 0.15 . The result shown in ® gure 3
isotropic liquid droplet in the centre of the nematic dropis in qualitative agreement with the lower experimental
(invisible in this image). Courtesy of P. Poulin.image in ® gure 2.

In ® gure 4 we plot the radial part f
(r) (r) [see

equation (14)] of the eigenfunction f (r, h)= f
(r) (r) f

(x) (h)
governing the twist deformations. For large values of
rmax / rmin it is strongly peaked near rmin . The maximum
of f

(r) (r) occurs at a radius r0 which is given by

ln
r0

rmin
=

ln (rmax / rmin )

p
arctan

2p

ln (rmax / rmin )
. (16)

Hence, for rmax / rmin&1 the maximal azimuthal com-
ponent b f (r0 , h) of the director ® eld is located at
r0 / rmin= e

2 # 7.39, i.e. close to the inner sphere. FromFigure 1. Stability diagram for the twist transition, cf.
equation (15). The dark grey triangle corresponds to the the polarizing miscroscope pictures it can be readily
ratios of Frank constants where the radial con® guration seen that the twist deformation is largest near the centre
is unstable for a ratio rmax / rmin = 50. The light grey of the nematic drop. In the opposite limit, rmax / rmin# 1,triangle is the region where the radial con® guration is

the position of maximal twist is at the geometric meanunstable for rmax / rmin > 50. The circles represent the elastic
constants for MBBA, 5CB and PAA. of rmin and rmax : r0 = (rmin rmax )1/2.
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757T wist transition in nematic droplets

Figure 5. A comparision between the regions of instability
for a radial director ® eld against twisting derived in this
article (full line) and by Lavrentovich and Terentjev
(dashed line) for rmax / rmin � 2 . The regions di� er by the
areas I and II.Figure 3. Calculated transmission for the twisted con® guration

of the director ® eld in a nematic drop whose diameter
is 20mm. The transmission amplitude was obtained by
summing over 20 wavelengths between 400 and 800nm.
The amplitude b of the twist deformation was set to 0.15. centre via a twist deformation to a radial director ® eldThis ® gure has to be compared with the lower image

at the periphery of a nematic drop. Then they performedin ® gure 2.
a stability analysis for an appropriately chosen order
parameter. The region of instability calculated in this
article and their result di� er by the areas I and II. This
is due to the complementarity of the two approaches.
While the authors of [8] allow for large deviations
with respect to the radial con® guration at the cost of
® xing an ansatz function, we allow the system to search
the optimal con® guration (i.e. eigenfunction) for small
deformations. We conclude that both results together
give a good approximation of the region of instability
for the radial con® guration against twisting. However,
we cannot exclude that a full non-linear analysis of the
problem leads to a change in the stability boundaries.

In conclusion, we have performed a linear stability
Figure 4. Radial dependence of f

(r) (r) [cf. equation (14)] for analysis of the radial con® guration in nematic drops
rmax / rmin = 50. The function is strongly peaked close to rmin . with respect to a twist deformation. Assuming strong

perpendicular anchoring at the surfaces we have derived
an instability condition in terms of the elastic constants.

In the limit rmin � 0, where the inner sphere is not We could show that a small water droplet inside the
present, a point defect with a core radius rc is located at nematic drop stabilizes the radial con® guration.
r = 0. In this case our boundary condition, f

(r) (rmin )= 0,
makes no sense, since the director is not de® ned for
r < rc . Fortunately, for rmin � 0 the lowest eigenvalue of References
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